Towards Repairing Scenario-Based Models with Rich Events

Guy Katz
The Hebrew University of Jerusalem, Jerusalem, Israel
guykatz@cs.huji.ac.il

Keywords: Scenario-Based Modeling, Program Repair, Model Checking, Constraint Solvers, SMT Solvers.

Abstract: Repairing legacy systems is a difficult and error-prone task: often, limited knowledge of the intricacies of these systems could make an attempted repair result in new errors. Consequently, it is desirable to repair such systems in an automated and sound way. Here, we discuss our ongoing work on the automated repair of Scenario-Based Models: fully executable models that describe a system using scenario objects that model its individual behaviors. We show how rich, scenario-based models can be model-checked, and then repaired to prevent various safety violations. The actual repair is performed by adding new scenario objects to the model, and without altering existing ones — in a way that is well aligned with the principles of scenario-based modeling. In order to automate our repair approach, we leverage off-the-shelf SMT solvers. We describe the main principles of our approach, and discuss our plans for future work.

1 INTRODUCTION

Modeling complex systems is a painstaking and difficult task. Even once a suitable model has been created, and the system in question has been implemented and deployed, the model may still need to be changed as part of the system’s life cycle — for example, if bugs are discovered, or if the specification of the system is changed. This post-deployment altering of systems and models, which we refer to as repair, is a challenging undertaking: even if the desired change is small, i.e. if it only affects a small portion of the system’s operations, attempting a fix could have undesirable consequences. For example, dependencies between various system components, which have not been properly modeled or documented, could make changing one component affect other components in unintended ways. This problem is typically compounded by lack of knowledge — because the engineers who developed the system are unavailable, or have forgotten crucial details. Thus, as program repair is frequently needed, we require formalisms and tools that will allow us to automatically repair systems and models in a safe and convenient way.

One promising approach for tackling this difficulty is through modeling techniques that facilitate model repair. Scenario-Based Modeling (SBM) (Damm and Harel, 2001; Harel and Mareelly, 2003; Harel et al., 2012b) is a notable candidate that fits this description. In SBM, systems are modeled through the specification of scenario objects: objects that represent individual behaviors of the system being modeled. Each of these objects describes either behavior that the system should uphold, or behavior that it should avoid. Although each object is only tasked with governing a narrow aspect of the overall system behavior, the resulting model is fully executable — i.e., the various objects can be composed together and executed, in a way that achieves the overall system goals. This execution is performed by an event selection mechanism, which is in charge of executing the objects simultaneously and synchronizing them in a way that produces cohesive behavior. Studies have shown that SBM is nicely aligned with how humans perceive systems, and that it consequently fosters abstract programming (Gordon et al., 2012; Alexandron et al., 2014).

Although SBM was designed as a general modeling framework, not particularly geared towards model repair, prior work has shown its compatibility with various formal analysis techniques, such as model-checking (Harel et al., 2011) and automated repair (Harel et al., 2014). This compatibility stems from the fact that scenario objects in a scenario-based (SB) model interact through the well defined interface of the event selection mechanism, making it possible to automatically construct a model of the full, composite system, and then analyze it. Tools and techniques have been devised to model-check and repair safely and liveness violations in SB models (Harel et al., 2011; Harel et al., 2011), to automatically optimize and distribute these models (Harel et al., 2011; Harel et al., 2011).
2 BACKGROUND

2.1 Vanilla Scenario-Based Modeling

The multiple variants of SBM that have been proposed typically include a set of scenario objects that are run in parallel, and repeatedly synchronize with each other, the most commonly used synchronization idioms (Harel et al., 2012b) include:

1. requesting events: a scenario object can request event \(e \), indicating that it wishes that \(e \) be triggered. Intuitively, \(e \) represents some desirable behavior that the system should now perform.

2. waiting-for events: a scenario object may wait-for an event, i.e. state that it wishes to be notified when that event is triggered. However, the object does not actively request this event. The waiting-for idiom is useful, for example, when an object is waiting for some sequence of external events to mark that it should perform some actions in response.

3. blocking events: when a scenario object blocks event \(e \), it prevents the overall system from triggering it — even if \(e \) was requested by another object. Intuitively, this is how components can indicate undesirable behavior, which the system is forbidden from performing.

We refer to the SBM variant that consists of these idioms as vanilla SBM, or vSBM, for short. In vSBM, each scenario object defines a set of synchronization points, and in each of these points it declares its sets of requested, waited-for and blocked events. The event selection mechanism collects these declarations from all objects; selects for triggering one enabled event, i.e. an event that is requested and not blocked; and then informs all the objects that requested or waited-for this event about the selection. These objects then progress to their next synchronization point, and the process is repeated as the execution continues.

A toy example, borrowed from (Harel et al., 2014), is depicted in Fig. 1. The model that appears therein belongs to a system that controls the water level in a tank. Adding water can be done from either a hot water tap or a cold water tap. The various scenario objects are each depicted as a transition system: the nodes represent the object’s synchronization points, and they are labeled with the events that are requested, waited-for and blocked in those points. The scenario object ADDHOTWATER repeatedly waits for WATERLOW events and requests three times the event ADDHOT; and the scenario object ADDCOLDWATER performs a symmetrical operation with cold water. If

We refer to the SBM variant that consists of these idioms as vanilla SBM, or vSBM, for short. In vSBM, each scenario object defines a set of synchronization points, and in each of these points it declares its sets of requested, waited-for and blocked events. The event selection mechanism collects these declarations from all objects; selects for triggering one enabled event, i.e. an event that is requested and not blocked; and then informs all the objects that requested or waited-for this event about the selection. These objects then progress to their next synchronization point, and the process is repeated as the execution continues.

A toy example, borrowed from (Harel et al., 2014), is depicted in Fig. 1. The model that appears therein belongs to a system that controls the water level in a tank. Adding water can be done from either a hot water tap or a cold water tap. The various scenario objects are each depicted as a transition system: the nodes represent the object’s synchronization points, and they are labeled with the events that are requested, waited-for and blocked in those points. The scenario object ADDHOTWATER repeatedly waits for WATERLOW events and requests three times the event ADDHOT; and the scenario object ADDCOLDWATER performs a symmetrical operation with cold water. If

2 BACKGROUND

2.1 Vanilla Scenario-Based Modeling

The multiple variants of SBM that have been proposed typically include a set of scenario objects that are run in parallel, and repeatedly synchronize with each other, the most commonly used synchronization idioms (Harel et al., 2012b) include:

1. requesting events: a scenario object can request event \(e \), indicating that it wishes that \(e \) be triggered. Intuitively, \(e \) represents some desirable behavior that the system should now perform.

2. waiting-for events: a scenario object may wait-for an event, i.e. state that it wishes to be notified when that event is triggered. However, the object does not actively request this event. The waiting-for idiom is useful, for example, when an object is waiting for some sequence of external events to mark that it should perform some actions in response.

3. blocking events: when a scenario object blocks event \(e \), it prevents the overall system from triggering it — even if \(e \) was requested by another object. Intuitively, this is how components can indicate undesirable behavior, which the system is forbidden from performing.

We refer to the SBM variant that consists of these idioms as vanilla SBM, or vSBM, for short. In vSBM, each scenario object defines a set of synchronization points, and in each of these points it declares its sets of requested, waited-for and blocked events. The event selection mechanism collects these declarations from all objects; selects for triggering one enabled event, i.e. an event that is requested and not blocked; and then informs all the objects that requested or waited-for this event about the selection. These objects then progress to their next synchronization point, and the process is repeated as the execution continues.

A toy example, borrowed from (Harel et al., 2014), is depicted in Fig. 1. The model that appears therein belongs to a system that controls the water level in a tank. Adding water can be done from either a hot water tap or a cold water tap. The various scenario objects are each depicted as a transition system: the nodes represent the object’s synchronization points, and they are labeled with the events that are requested, waited-for and blocked in those points. The scenario object ADDHOTWATER repeatedly waits for WATERLOW events and requests three times the event ADDHOT; and the scenario object ADDCOLDWATER performs a symmetrical operation with cold water. If
the model only includes these two objects, ADDHOTWATER and ADDCOLDWATER, the three ADDHOT events and three ADDCOLD events may be triggered in any order when the model is executed. If, for example, we wish to maintain a steady water temperature, we may add the scenario object STABILITY in order to enforce the interleaving of ADDHOT and ADDCOLD events, by using event blocking. The execution trace of the resulting model (with all three objects) is depicted in the event log.

![Event Log Diagram](image)

Figure 1: (From (Harel et al., 2014)) A scenario-based model of a system that controls the water level in a tank with hot and cold water taps.

We follow the definitions of (Katz, 2013), and formalize the vSBM framework as follows. Given some finite event set E, we define a scenario object O as the tuple $O = (Q, \delta, q_0, R, B)$, where the interpretation of the components is as follows:

- Q is a set of states. Each state represents a predetermined synchronization point.
- $q_0 \in Q$ is the initial state.
- R and B are mappings, $R,B : Q \rightarrow 2^E$. They map states to sets of events requested (R) and blocked (B) at those states.
- $\delta : Q \times E \rightarrow 2^Q$ is a transition function. It indicates how the object reacts when an event is triggered, i.e. if $q' \in \delta(q,e)$ then the object can transition to state q' when event e is triggered in state q.

We sometimes refer to this tuple as the underlying transition graph of scenario object O.

The composite model specified by a set of scenario objects is defined using a composition operator, which combines two scenario objects into a single, larger scenario object, as follows. For two scenario objects $O^1 = (Q^1, \delta^1, q_{01}, R^1, B^1)$ and $O^2 = (Q^2, \delta^2, q_{02}, R^2, B^2)$, both over a common event set E, we define the composite scenario object $O^1 \parallel O^2$ as $O^1 \parallel O^2 = (Q^1 \times Q^2, \delta, (q_{01}, q_{02}), R^1 \cup R^2, B^1 \cup B^2)$, where:

- The transition relation is defined element-wise, i.e. $(q^1, q^2) \in \delta((q^1, q^2), e)$ if and only if $q^1 \in \delta^1(q^1, e)$ and $q^2 \in \delta^2(q^2, e)$.
- The labeling of a composite state is the union of the element-wise labeling, i.e. $e \in (R^1 \cup R^2)((q^1, q^2))$ if and only if $e \in R^1(q^1) \cup R^2(q^2)$, and $e \in (B^1 \cup B^2)((q^1, q^2))$ if and only if $e \in B^1(q^1) \cup B^2(q^2)$.

Finally, we define a behavioral model M as a collection of scenario objects O^1, O^2, \ldots, O^n. The executions of M are then defined to be the executions of the composite scenario object $O = O^1 \parallel O^2 \parallel \cdots \parallel O^n$. Each execution of M starts from the initial state of O, and in each state q along the run it selects for triggering an enabled event, i.e., an event $e \in R(q) - B(q)$ (if no such event exists, the execution terminates in a deadlock). Then, the execution moves to a state $q' \in \delta(q,e)$, and so on.

In practice, users very seldom describe models by providing the transition graphs of their scenario objects. Instead, SBM has been implemented in a variety of tools, either as dedicated frameworks (e.g., the Play-Engine tool for Live Sequence Charts (LSC) (Harel and Mareelly, 2003) or the Scenario-oTools (Greenyer et al., 2017) engine), or on top of popular programming languages, such as JavaScript (Bar-Sinai et al., 2018), Python, Java (Harel et al., 2010) and C++ (Harel and Katz, 2014). SBM has been used in modeling complex systems, such as robotic controllers (Elyasaf et al., 2019; Gritzner and Greenyer, 2018), web-servers (Harel and Katz, 2014), smart buildings (Elyasaf et al., 2018), a nanosatellite (Bar-Sinai et al., 2019), and cache coherence protocols (Harel et al., 2016a).

2.2 Scenario-Based Modeling with Rich Events

Although vanilla SBM has been successfully used in various contexts, in recent years it was shown that it may fall short in expressing various complex interactions between scenario objects (Katz et al., 2019; Katz, 2020; Elyasaf, 2020). Specifically, the simple event declaration mechanism — a finite set of events E, and a finite set of requested, waited-for and blocked events in every state, may be inadequate for expressing more complex behaviors.

For example, consider a drone that needs to turn left or right by a certain degree. Degrees are represented as real numbers, and an attempt to express this using vanilla SBM would require either some loss of precision, e.g. by discretizing the set of possible degrees; or the use of various hacks that circumvent the SBM event selection mechanism, thus going against the grain of SBM.

In line with the notions in (Katz et al., 2019), we define rich SBM ($rSBM$) as follows: instead of dis-
crete events, the event set E now contains a set of real-valued variables. Each scenario object can now request that certain variables in E be assigned certain values, and block certain variables from being assigned other values. Event selection then consists of choosing a variable assignment that satisfies at least one request, and violates none of the blocked assignments.

An example appears in Fig 2. The model depicted therein belongs to a system controlling a drone. The event set E contains two real variables, $E = \{v, h\}$, representing the vertical and horizontal angular velocities of the drone, respectively. Each round of event selection assigns new values to these variables. Scenario object 1 poses hard limits of $v \geq 2$ and $h = 0$, while not turning left or right ($h > 0$). Afterwards, it requests a right turn at 10 degrees per second ($h \geq 10$), while blocking the drone from changing altitude or turning left ($v \neq 0 \land h < 0$). Depending on the actual right turn that was performed, the object might request an additional right turn at 10 degrees per second, this time forcing the drone to turn by blocking all other possible assignments. Finally, the object reaches its goal state, and requests nothing more.

![Diagram](image)

Figure 2: A model for controlling a drone, comprised of three scenario objects. Each state lists the requested and blocked assignment for that state; and the transitions are given as guard formulas, where a transition can be traversed if and only if the triggered assignment satisfies the guard.

Observe that the model in Fig. 2 again depicts the scenario objects as transition systems. Further, the edges do not list the (possibly infinite) set of assignments that trigger the transition, but instead list guard formulas: an edge may be traversed only if the triggered assignment satisfies the edge’s guard.

We formalize rich SBM as follows. The set E is no longer a discrete set of events, but is instead a set of real-valued variables $E = \{x_1, \ldots, x_n\}$. A scenario object O is a tuple $O = \langle Q, \delta, q_0, R, B \rangle$, where Q is again a set of states and $q_0 \in Q$ is an initial state. The labeling functions now map each state $q \in Q$ into a first-order, linear real arithmetic formula. Specifically, these formulas can impose linear constraints on the variables e.g., $x_1 \geq 5$ or $x_2 + x_3 \leq x_4$, and can have arbitrary Boolean structure: e.g., $(x_1 \geq 5) \land (x_2 + x_3 < 7)$. The transition function $\delta : Q \times E^m \rightarrow 2^O$ now defines how the state transitions for every possible assignment α that assigns a real value to each of the variables x_1, \ldots, x_n.

For two scenario objects $O^1 = \langle Q^1, \delta^1, q_0^1, R^1, B^1 \rangle$ and $O^2 = \langle Q^2, \delta^2, q_0^2, R^2, B^2 \rangle$, both over a common variable set E, we define the composite scenario object $O^3 \parallel O^2$ as $O^3 = \langle Q^3, \delta^3, \langle q_0^1, q_0^2 \rangle, R^3 \cup R^2, B^3 \cup B^2 \rangle$. As before, the transition relation is defined element-wise, i.e., $(q^3, q^3') \in \delta^3(q^1, q^2, e)$ if and only if $q^3 \in \delta^1(q^1, e)$ and $q^3' \in \delta^2(q^2, e)$. The composite formulas that represent the requested and blocked events are defined as the disjunctions of the element-wise formulas: $R^3 \cup R^2((q^1, q^2)) = R^1((q^1)) \cup R^2((q^2))$ and $B^3 \cup B^2((q^1, q^2)) = B^1((q^1)) \cup B^2((q^2))$.

The rich behavioral model M is now defined as a collection of rich scenario objects O^1, O^2, \ldots, O^n. The executions of M are then defined to be the executions of the composite scenario object $O = O^1 \parallel O^2 \parallel \ldots \parallel O^n$. Each execution of M starts from the initial state of O, and in each state q along the run it selects for triggering a variable assignment α, that satisfies the formula

$$R(q) \land \neg B(q).$$

In other words, the selected assignment satisfies the request of at least one component object, and does not contradict the blocking declarations issued by any object. Then, the execution moves to a state $q' \in \delta(q, \alpha)$, and so on.

In practice, the discovery of an assignment that satisfies the given constraints can be performed using various automated solvers, such as LP or SMT solvers (Harel et al., 2020). Because we restrict our constraints to first-order, quantifier-free linear real arithmetic, they can be resolved in polynomial time (Barrett and Tinelli, 2018).

3 FORMALLY ANALYZING RICH SCENARIO-BASED MODELS

Much work has been put into performing formal, automated analysis of SB models (e.g., (Harel et al., 2011; Katz, 2013; Harel et al., 2018)). The cor-
nerstone of these techniques is the automated extraction of the underlying transition graph of an SB model \(M = \{O^1, \ldots, O^n\} \) given in some high-level language, such as C++. Intuitively, this is done in two steps (Katz, 2013):

1. The underlying transition graph of each scenario object \(O \) is extracted independently, directly from its code. This process is performed by iteratively exploring the object’s synchronization points. Starting at the initial state \(q_0 \), each non-blocked event \(e \in E \) is triggered, and the object’s reaction to \(e \) is recorded. If the object transitions to some state \(q \), then the edge \(q_0 \rightarrow q \) is added to its transition graph. If \(q \) is a previously unvisited state, it is added to a queue for later inspection. The process repeats until all possible events, in all reachable states, have been considered and mapped.

2. Once the transition graph for each scenario object has been extracted, these graphs are composed to produce the composite transition graph of \(M \) (according to the composition operator defined in Section 2).

A key point in this construction is that the event set \(E \) is finite. In particular, in Step 1 this allows us to exhaustively trigger each non-blocked event in each state, and check how the object transitions. In order to apply a similar technique to rSB models, this step needs to be adjusted; specifically, in an rSB model, the discrete set of enabled events is replaced with a variable assignment, and because there are infinitely many such assignments, enumerating them is impossible. Step 2, on the other hand, remains unchanged also when reasoning about rSBM, and can be applied to construct the composite transition graph.

The method that we propose for extracting the transition graph from a scenario object is as follows. We make the observation that although there are infinitely many variable assignments that the object needs to react to, these are typically grouped into a finite number of possibilities that the object handles in the same way. Consider, for example, the following code snippet that defines a rich scenario object in some high-level language:

```plaintext
text{sync
( \text{request}= (x < 5) )
;}
\text{if ( x \geq 2 )}
\ A();
\text{else}
\ B();
```

Here, the object synchronizes (using the `sync` keyword) and requests that \(x \) be assigned a value less than 5. Then, when the synchronization call returns, i.e. when \(x \) has been assigned a value smaller than 5, the object performs \(A() \) if \(x \geq 2 \), and \(B() \) otherwise. Thus, there is no difference between \(x = 3 \) and \(x = 4 \), as far as the underlying transition graph is concerned; in either case, the object will transition into the same state (the next synchronization point in \(A \)). Additionally, the relevant predicates, i.e. \((x \geq 2) \) in this case, are already available to us: we can find them by simply parsing the code of the scenario object, and collecting all the predicates that appear therein.

We thus propose the following approach. Given a scenario object \(O \) in some high-level language, we first parse its code and produce the set \(P_O \) of all predicates that appear in \(O \) — either as formulas within its synchronization points, or elsewhere in the code. Next, at every state \(q \) of \(O \), we observe the power-set \(2^{P_O} \), and for each element \(\langle \varphi_1, \ldots, \varphi_k \rangle \in 2^{P_O} \) we use an SMT solver to come up with a concrete assignment for which \(\varphi = \bigwedge_{i=1}^{k} \varphi_i \) holds. If such an assignment \(\alpha \) exists, we trigger it at state \(q \), and record

\[
q \xrightarrow{\alpha} q'
\]

in our transition graph. The full algorithm appears as Alg. 1.

Algorithm 1: Extract Transition Graph(O).

```plaintext
1: \text{P} \leftarrow \text{all predicates in } O \\
2: \text{Q.push}(q_0) \\
3: \text{while } Q \text{ not empty do} \\
4: \quad q \leftarrow Q.pop() \\
5: \quad \text{for } \langle \varphi_1, \ldots, \varphi_k \rangle \in 2^{P_O} \text{ do} \\
6: \quad \quad \varphi \leftarrow \bigwedge_{i=1}^{k} \varphi_i \\
7: \quad \quad \alpha \leftarrow \text{SMT}(\varphi) \\
8: \quad \quad \text{if } \alpha \neq \bot \text{ then} \\
9: \quad \quad \quad \text{Invoke } \alpha \text{ in state } q, \text{ mark new state as } q' \\
10: \quad \quad \quad \text{Add } q \rightarrow q' \text{ to transition graph} \\
11: \quad \quad \quad \text{if } q' \text{ not previously visited then} \\
12: \quad \quad \quad \quad Q.push(q') \\
13: \quad \quad \quad \text{end if} \\
14: \quad \quad \text{end if} \\
15: \quad \text{end for} \\
16: \text{end while}
```

For soundness, we have the following lemma. The proof, by induction on the path length, is straightforward and is omitted.

Lemma 1. Let \(M \) be an rSB model, and let \(G \) be its transition graph constructed by Alg. 1. Then any execution path \(q_0,q_1,\ldots \) of \(M \), either finite or infinite, corresponds to a path \(s_0,s_1,\ldots \) in \(G \), and vice versa.

A natural concern is about the size of the power set, \(2^{P_O} \). We argue that this size is quite manageable: indeed, scenario objects tend to be short and
concise, as they deal only with specific aspects of the system in question. Thus, spanning the individual transition graphs should be doable, even for large systems. Of course, computing the composite transition graph in Step 2 might suffer from the infamous state explosion problem, which is common in verification. Here, one possible solution is to break the model up into sub-models, and reason about each of them separately; there exist techniques for doing this (Harel et al., 2013a), but they are out of our scope here.

Example. Observe the following pseudo-code, which represents Object 3 from Fig. 2:

```plaintext
sync( request = (v ≥ 2 ∨ h = 0) );
sync( request = (h ≥ 10), block = (v ≠ 0 ∨ h < 0) );
if ( h < 10 )
    sync( request = (h ≥ 10),
        block = (v ≠ 0 ∨ h < 10 ) );
sync( request = (true) );
```

In this case, syntactically constructing the set \(P_0 \) yields:

\[
P_0 = \{ v ≥ 2, h = 0, h ≥ 10, v = 0, h < 0 \}
\]

(we do not need to consider a predicate and its negation, e.g. \(h ≥ 10 \) and \(h < 10 \), twice). Thus, the power set \(2^{P_0} \) has 32 elements. One of these elements is \(\langle v ≥ 2, h = 0 \rangle \). Passing the constraint \(v ≥ 2 ∧ h = 0 \) to an SMT solver yields a concrete assignment, e.g. \(v = 3, h = 0 \). Finally, triggering this assignment in state \(q_0 \), which is the first synchronization point of this scenario object, reveals a new state which corresponds to the second synchronization point. However, triggering the element \(\langle v = 0 \rangle \) does not result in reaching a new state: the scenario object did not request this assignment, and so it does not wake up from the synchronization call.

Repeating this process to saturation produces a transition graph equivalent to the one depicted in Fig. 2. (In order to reduce clutter in the resulting graph, some transitions can then be merged together by additional invocations of the SMT solver; applying this approach is part of our ongoing work.)

4 FORMALLY ANALYZING rSBM

Model Checking Rich SBM. Given Lemma 1, it is straightforward to devise a model-checking algorithm for rSBM models. Given a model \(M \) and a safety property \(ϕ \), we can construct the transition graph \(G \) of \(M \), compose it with \(ϕ \), and then check whether there are any reachable states that violate \(ϕ \). The rSBM formalism is sufficiently expressive to formulate the property \(ϕ \) itself as a scenario object that simply marks some of its states as bad. Then, the same techniques from Section 3 can be used to extract the composite transition graph.

We demonstrate this process with an example. Let us review again the model from Fig. 2, and let us consider a safety property stating that it is forbidden for the drone to turn sharply, either vertically or horizontally, twice in a row. This property can be encoded as the scenario object that appears in Fig. 3. This object never requests or blocks anything; it only waits for two consecutive events in which the horizontal or vertical angular velocities were high (|\(h \)| ≥ 18 or |\(v \)| ≥ 4, respectively). If such two consecutive events are detected, the object marks the state as bad.

![Figure 3: Encoding a safety property as an rSBM scenario object.](image)

By composing this new scenario object with the model depicted in Fig. 2 and searching for reachable bad states (e.g., using BFS), we can determine that a safety violation is possible. Further, using the concrete variable assignments returned by the SMT solver, we can provide a counter-example that demonstrates this, e.g.: the triggering of \(\langle v = 5, h = 0 \rangle \) and then of \(\langle v = 0, h = 20 \rangle \), which is allowed by the model.

Repairing Rich SBM Modes. Given an rSB model \(M \) and a violated safety property \(ϕ \), we now seek to repair \(M \) so that \(ϕ \) becomes satisfied. Our goal is to cut off any bad states in the underlying transition graph \(G \), so that they become unreachable from the initial state \(q_0 \). Further, we wish to cut off only paths that lead, or are guaranteed to lead, to a violating state; that is, we do not wish to remove any runs that are not violating.

To this end, we follow an approach proposed for repairing vSBM (Harel et al., 2014) and utilize the blocking idiom to create patch scenario objects. Specifically, we propose to add to the scenario-based model an additional scenario object that will apply blocking at selected points during the execution, so as to cut off the reachable bad states from the transition graph. The algorithm for performing this repair has the following steps: (i) given a behavioral model \(M \)
and a scenario object for a violated safety property φ, we extract the composite transition graph of M and φ, as previously described. We then apply BFS to identify the set B of all reachable bad states in this graph; (ii) next, we iteratively search for states currently not in B, i.e. $q \notin B$, such that all of their outgoing edges lead to B, i.e. $q \rightarrow q' \Rightarrow q' \in B$. Any such state is guaranteed to eventually lead to a violating state, and so is added to B, i.e. $B := B \cup \{q\}$. This process is repeated until we reach a fixed point, and no new states can be added to B; (iii) finally, we add a new scenario object to the model that keeps track of the execution, and blocks precisely those edges that lead to states in B. Intuitively, this process cuts off precisely those states that are either bad themselves, or are guaranteed to lead to a bad state in a finite number of steps. Thus, we only remove runs that violate the safety property in question, and no others. Additionally, we create no new bad runs, and do not introduce any deadlocks.

We demonstrate this process using the rSB model from Fig. 2 and the violated safety property from Fig. 3. The full, composite transition graph of this model (including the safety property) is depicted in Fig. 4. Unsurprisingly, there is a reachable bad state in this model (state q_6). Our repair algorithm thus starts from state q_4, i.e. $B = \{q_0\}$, and identifies all states with edges leading to q_6; in this case, state q_3. Because state q_3 has edges leading also to states not marked as bad (states q_3 and q_4), it is not added to the set B of bad states. Thus, the algorithm generates a new scenario object such that, when composed with the existing scenario objects, will apply blocking to prevent state q_3 from transitioning into state q_6.

This new scenario object is depicted in Fig. 5. It merely waits for the sequence of events that would send the original model into state q_4, namely an assignment that satisfies $v \geq 4 \land h = 0$; then blocks the assignments that would send the original model into state q_6, namely $h \geq 18$; and then does nothing else for the remainder of the run.

For soundness, we have the following lemma (proof omitted):

Lemma 2. Let M be an rSB model with reachable bad states, and let M' be this model augmented with a patch scenario object, as explained above. The set of runs of M' is then precisely the set of runs of M, with all violating runs removed.

We note that, while we have focused here on model checking and repairing safety violations in rSB models, similar operations can be performed also for liveliness properties. Given a liveliness property φ, formulated as a scenario object that marks some states as good, we can check whether there exists a reachable cycle in the composite rSB model that does not contain any good states (Baier and Katoen, 2008). Further, if we detect such a cycle, a patch scenario object can be added to the model to prevent it, again using the blocking idiom (Harel et al., 2014). We leave treatment of this case for future work.

5 RELATED WORK

The general research question that this paper addresses, namely how to effectively model complex systems and then repair these models, has been studied extensively. Here, we focused on the scenario-based modeling paradigm, in which system behaviors are modeled as scenarios (Damm and Harel, 2001; Harel and Marelly, 2003; Harel et al., 2012b). There are numerous related approaches for modeling event-driven reactive systems: notable examples include ESTerel (Berry and Gonthier, 1992), Lustre (Halbwachs et al., 1991), Signal (Le Guernic et al., 1991), and Petri Nets (Holloway et al., 1997). Similar concepts appear also in component based programming languages, such as RIP (Basu et al., 2006). Some of our repair techniques may be carried over to these frameworks, provided that the blocking idiom, which is crucial to our approach, is present or can be achieved using other idioms. More broadly, scenario-based modeling is adequate for modeling discrete event systems (Cassandras and Lafortune, 2009); and the repair of SB models is related to the supervisory control problem of such systems (Ramadge and Wonham, 1987; Ramadge and Wonham, 1989).

Prior work has demonstrated how scenario-based models may be automatically repaired (Katz, 2013; Harel et al., 2014; Harel et al., 2012a), and here we generalized and extended this approach to scenario-based models with rich events — which are necessary for modeling more complex systems (Katz et al., 2019; Katz, 2021; Elyasaf et al., 2018; Bar-Sinai et al., 2019). The automated repair problem in other modeling and programming paradigms has also been studied extensively: some examples include fault localization and automatic repair by identifying sets of malfunctioning components and synthesizing replacement components (Staber et al., 2005b; Staber et al., 2005a; Jobstmann et al., 2005); program repair via semantic analysis (Nguyen et al., 2013); the automatic repair of concurrency-related bugs by analyzing execution traces associated with bug reports (Jin et al., 2011); applying genetic-programming to repair legacy C programs (Weimer et al., 2010); combining genetic-programming with co-evolution of test cases until a bug is repaired (Arcuri and Yao, 2008); and leveraging information regarding previous repairs (Le
Towards Repairing Scenario-Based Models with Rich Events

6 CONCLUSION

Scenario-based modeling is promising approach for designing and implementing complex systems: on one hand, it is intuitive and well-aligned with human perception of models, and on the other it is compatible with automated analysis and repair of models. Our initial results demonstrate that extending SBM to support rich events, which may be required for modeling various real-world systems, does not harm this compatibility: specifically, it is still possible to span the underlying transition systems of models, and use these transition systems for model-checking and automated repair.

We regard this paper as a first step in the direction of creating automated analysis tools for rSBM. As part of our ongoing work we are pursuing several directions: (i) implement our repair technique on top of an existing rSBM platform, and evaluate it on varied benchmarks; (ii) leverage our technique for spanning rSBM transition graphs to automate additional aspects of the system’s life cycle, such as optimization (Harel et al., 2015a) and specification mining (Harel et al., 2018); and (iii) further improve the scalability of our technique for transition graph spanning. We hope that these lines of work will promote the use of rSBM in additional systems and settings.
ACKNOWLEDGEMENTS

The project was partially supported by grants from the Binational Science Foundation (2017662) and the Israel Science Foundation (683/18).

REFERENCES

